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Two types of working memory (WM) have recently been proposed:
(i) active WM, relying on sustained neural firing, and (ii) activity-
silent WM, for which firing returns to baseline, yet memories may
be retained by short-term synaptic changes. Activity-silent WM in
particular might also underlie the recently discovered phenomenon
of non-conscious WM, which permits even subliminal stimuli to be
stored for several seconds. However, whether both states support
identical forms of information processing is unknown. Theory pre-
dicts that activity-silent states are confined to passive storage and
cannot operate on stored information. To determine whether an
explicit reactivation is required before the manipulation of informa-
tion in WM, we evaluated whether participants could mentally ro-
tate brief visual stimuli of variable subjective visibility. Behaviorally,
even for unseen targets, subjects reported the rotated location
above chance after several seconds. As predicted, however, at the
time of mental rotation, such blindsight performance was accompa-
nied by (i) neural signatures of consciousness in the form of a sustained
desynchronization in alpha/beta frequency and (ii) a reactivation of the
memorized information as indicated by decodable representations
of participants’ guess and response. Our findings challenge the
concept of genuine non-conscious “working” memory, argue that
activity-silent states merely support passive short-term memory,
and provide a cautionary note for purely behavioral studies of
non-conscious information processing.

working memory | conscious perception | activity-silent brain states | non-
conscious working memory | magnetoencephalography

Working memory (WM) is critical to store information for
rapid access, transformation, and flexible use. Until re-

cently, it was thought to depend on conscious processing (1, 2)
and persistent neural activity (3, 4). However, a growing body of
work suggests that successful WM maintenance may be dissociated
from both. Subjectively unseen items may still be retrieved above
chance level after several seconds (i.e., non-conscious WM; refs. 5–
10). Likewise, content-specific delay-period activity may be disrupted
(11) or even vanish entirely when maintaining non-conscious or
unattended information (i.e., activity-silent WM; refs. 9 and 12–14).
Theories and simulations predict that such “activity-silent”

maintenance without accompanying neural activity may be sup-
ported by transient, functional changes in synapses, temporarily
linking neural populations coding for the stored items (15, 16).
Later, a nonspecific stimulation of these very neurons may re-
instate the original firing pattern, an effect that was recently ob-
served experimentally (12, 13). Short-term synaptic changes may
thus effectively allow networks to go silent for several seconds
while still supporting delayed information readout. Although not
always explicitly stated as such, the bulk of the available evidence
opens up the possibility that these activity-silent representations
may be preferentially reserved for information not currently ac-
cessible to conscious awareness (e.g., refs. 9 and 17).
Critically, it remains unknown whether active vs. activity-silent

forms of WM support identical forms of information processing.
Beyondmaintenance, a key feature ofWM is the ability to manipulate
information, for example during mental rotation (18). If non-

conscious WM representations are indeed stored via activity-silent
short-term synaptic changes, it is unclear whether they might be
altered without first being reactivated (i.e., coded via active neural
firing). Neural network models operate by exchanging patterns of
spiking activity, and there exists no theory of how computations
could unfold solely via transient synaptic changes. In fact, modifi-
cations or transformations of activity-silent representations or states
are thought to be activity-dependent (16). Thus, we predicted that
for activity-silent WM to enter into an information-processing
stream it would first have to be reinstated into an active form.
We specifically evaluated the limits of information processing for

active vs. activity-silent WM in the context of non-conscious WM
by asking participants to perform a delayed mental rotation task
with subjectively seen and unseen stimuli. Our results suggest that
this task can be performed even with invisible stimuli, but that, on
one hand, such a manipulation of WM involves the reinstatement
of the contents of WM into consciousness and, on the other hand,
persistent neural activity, thus suggesting an intrinsic limit to both
activity-silent and/or non-conscious operations.

Results
We first collected behavioral measures (n = 23), then recorded
magnetoencephalography (MEG) signals in a second sample
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(n = 30), always employing the same task (Fig. 1). On each trial,
a target square in gray (barely visible target-present trials, 80%) or
black ink (target-absent control condition, 20%) was flashed in 1 of
24 locations, then masked. Halfway through a 3-s delay period, a
cue instructed participants to maintain the original target location
(no-rotation condition) or to mentally rotate it 120° clockwise or
counterclockwise (rotation condition). Subjects had to comply with
these instructions even if they had not seen the target: They were
asked to guess the correct final response location if necessary.
Participants then rated their subjective visibility of the target using
the classical perceptual awareness scale (19), ranging from 1 (no
perception whatsoever) to 4 (clearly seen).

Behavioral Evidence for Mental Rotation of Non-conscious Stimuli.
We first quantified the extent to which subjects could detect,
maintain, and manipulate targets in the behavioral experiment.
Participants varied their visibility ratings as a function of target
presence, reporting the majority of target-absent trials as unseen
(visibility = 1; 88.1 ± 3.1%) and approximately two-thirds of the
target-present trials as seen (visibility > 1; 67.7% ± 3.5%). Target
detection d′ exceeded chance [2.0 ± 0.1; t (22) = 13.2, P < 0.001].
Spatial position of the target also influenced subjective visibility re-
ports: More targets were detected when they were presented along
the horizontal (73.5 ± 3.5%; i.e., positions 4 through 9 and
16 through 21 in SI Appendix, Fig. S1A) rather than along the vertical
axis [60.0 ± 4.1%; t (22) = 3.8, P < 0.001; i.e., positions 10 through
15 and 22 through 3 in SI Appendix, Fig. S1A]. Crucially, task (no-
rotation vs. rotation) did not modulate subjects’ visibility [task ×
target presence × visibility interaction: F(1, 22) = 3.2, P =
0.088], suggesting that participants used the rating scale
similarly in both tasks.
Forced-choice localization performance corroborated this inter-

pretation. On seen trials in the no-rotation condition, accuracy was
relatively high (65.8 ± 2.5%; chance = 1/24 = 4.17%) and increased
monotonically from glimpsed (visibility = 2) to clearly seen targets
(visibility = 4; pairwise comparisons: P < 0.05, except for the com-
parison between visibility 2 and 3, where P = 0.296; SI Appendix, Fig.
S2 A, Top). Accuracy remained high on seen rotation trials (30.1 ±
1.9%), albeit lower than on no-rotation trials [t (22) = 12.3, P <
0.001] and without a clear increase as a function of visibility (pairwise
comparisons: P > 0.180; SI Appendix, Fig. S2 A, Bottom). Most
crucially, even on the unseen trials, performance was well above
chance for the no-rotation and rotation task, irrespective of rotation
direction (SI Appendix, Table S1).
Subjects’ responses surrounded the correct location, yet with

greater spread after rotation than no-rotation trials (Fig. 2A and
SI Appendix, Fig. S2A). We quantified the rate of approximately
correct responding (i.e., correct location ± 30°) and estimated
the precision of genuine representations (as opposed to random
guesses) held in WM (i.e., SD within this tolerance interval,
having accounted for random guessing; see Methods and refs. 9
and 10). Spatial position influenced participants’ ability to
identify the correct response location, with subjects’ responses
falling in the region of correct responding more frequently when
the target had been presented along the horizontal (83.5 ± 1.7%)
rather than along the vertical axis [74.3 ± 3.6%; t (22) = 2.9, P =
0.008; SI Appendix, Fig. S1B]. Moreover, both task [F(1, 22) = 9.9,
P = 0.005] and visibility [F(1, 22) = 151.1, P < 0.001] affected the
rate of correct responding. Participants’ responses fell near the
correct location more often in the no-rotation (76.5 ± 2.4%) than in
the rotation condition (69.4 ± 2.4%), and when having seen (94.1 ±
1.0%) rather than when not having seen the target square (51.9 ±
3.8%). These factors did not interact [F(1, 22) = 0.2, P = 0.657; Fig.
2 A, Top Inset], indicating that decrements in performance following
a mental rotation were comparable for seen and unseen targets.
Analysis of precision reinforced this conclusion: Out of 23 sub-

jects, 19 displayed above-chance blindsight (i.e., genuine mainte-
nance inWM compared with random guessing) across both rotation
directions (chance = 20.83%; P < 0.05 in a χ2 test) and were in-
cluded here. Task [F(1, 18) = 34.9, P < 0.001] and visibility [F(1,
18) = 10.3, P = 0.005] again influenced localization performance but
this time also interacted [F(1, 18) = 8.9, P = 0.008]. Rotating the
target decreased the precision of participants’ responses for seen
[t (18) = −11.9, P < 0.001] and unseen targets [t (18) = −2.3, P =
0.031], but this reduction was stronger for seen than unseen trials
[t (18) = −3.0, P = 0.008; Fig. 2 A, Bottom Inset]. There was
therefore no observable detriment to rotating an unseen location.
We replicated these observations in the MEG experiment. Sub-

jects employed the visibility scale meaningfully, rating target-present

trials primarily as seen (64.6 ± 3.2%) and target-absent trials as
unseen [83.6 ± 2.5%; detection d′: 1.7 ± 0.1, t (29) = 14.2, P < 0.001]
in both tasks [task × target presence × visibility interaction: F(1,
29) = 2.1, P = 0.159]. There was again a slight bias toward prefer-
entially seeing targets on the horizontal (69.1± 3.5%) rather than
the vertical axis [51.5 ± 3.5%; t (29) = 6.8, P < 0.001; SI Appendix,
Fig. S1A]. Localization accuracy for seen targets was modestly high
in the no-rotation condition (57.5 ± 2.2%; SI Appendix, Fig. S2 B,
Top) and reduced following a mental rotation [27.1 ± 1.6%, t (29) =
14.3, P < 0.001; SI Appendix, Fig. S2 B, Bottom]. We again observed
a long-lasting blindsight effect in both tasks and for all rotation di-
rections (SI Appendix, Table S1). Targets presented along the hor-
izontal axis (73.4 ± 2.7%) were identified correctly more frequently
than their counterparts along the vertical axis [62.43 ± 3.8%;
t (29) = 4.5, P < 0.001; SI Appendix, Fig. S1B]. Task and visibility
influenced the rate of correct responding [main and interaction ef-
fects: all Fs (1, 29) > 4.8, all Ps < 0.036] and precision [n = 27; main
and interaction effects: all Fs (1, 26) > 8.3, all Ps < 0.008]. Mental
rotation decreased participants’ performance on seen trials [t (29) =
5.0, P < 0.001], but this effect did not reach significance on unseen
trials [t (29) = 1.8, P = 0.090; Fig. 2 B, Top Inset]. Moreover, it also
reduced precision more for seen [t (26) = −15.9, P < 0.001] than for
unseen targets [t (26) = −3.9, P < 0.001; Fig. 2 B, Bottom Inset].
Combining the data from both experiments confirmed the

above conclusions (SI Appendix, Supplementary Results and Fig.
S3): Even when they failed to perceive the target, subjects suc-
ceeded in manipulating it. However, there exist at least three
possible explanations for this long-lasting blindsight effect. First,
it may have been the product of a genuine non-conscious ma-
nipulation. Second, it may have resulted from a fraction of seen
trials miscategorized as unseen; this interpretation, although
rejected in our previous experiment without rotation (9), needs
to be reexamined here. Third, subjects may have recovered the
information from non-conscious WM at or before the time of the
cue, transformed it into a conscious, active representation, and
thereafter consciously manipulated this early guess. To resolve
these possibilities, we turned to our MEG data, focusing on five a
priori time windows: early brain responses (0.1 to 0.3 s), the P3b
time window critical for conscious perception (0.3 to 0.6 s), the
delay period before (0.6 to 1.76 s) and after (1.76 to 3.26 s) the
rotation cue, and the response period (3.26 to 3.5 s).

Long-Lasting Blindsight Does Not Arise from Miscategorization of
Seen Trials. Above-chance objective performance for unseen
targets could have resulted from the erroneous mislabeling of
some seen targets as unseen. In this case, the unseen correct
trials should display the same neural signatures of conscious
processing as seen trials (9). There should be an amplification of
brain activity during the P3b time window, and a classifier
trained to distinguish accuracy on the unseen trials should re-
semble a standard visibility decoder (i.e., seen vs. unseen). By
contrast, the classification of seen vs. unseen correct trials should
produce a different pattern of results or fail entirely.
To evaluate this miscategorization hypothesis, we first examined

which patterns of brain activity distinguished seen (visibility > 1)
from unseen (visibility = 1) trials. This analysis revealed typical
markers of conscious processing (9, 20). Seen targets elicited a strong
positive response between ∼300 and 600 ms in right-lateralized
centroparietal sensors, corresponding to activations in occipital,
temporal, parietal, and dorsolateral prefrontal brain areas (pclust =
0.011; Fig. 3A). Brain activity was amplified during the P3b time

Fig. 1. Experimental design. Participants completed a spatial delayed-
response task. On each trial, a faint target was flashed in 1 of 24 locations
and masked. A letter cue presented halfway through a 3-s delay period
signaled the specific task. (i) Following an equal sign (=), subjects were to
report the exact location in which the target had appeared. (ii) The letter D
indicated a 120° clockwise and (iii) the letter G a 120° counterclockwise
rotation with respect to the target position. Last, participants rated their
subjective visibility of the target on a four-point scale.
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window (i.e., ∼292 and 576 ms; puncorrected < 0.05), although differ-
ences with unseen targets also persisted between ∼964 and 1,320 ms
(puncorrected < 0.05; Fig. 3B). Rotation and no-rotation trials did not
differ (task × visibility interaction: pclust > 0.280).
When contrasting the unseen correct (i.e., within ±30° of the

correct response location) with the unseen incorrect epochs, we
observed no evidence for a miscategorization. No significant dif-
ferences emerged (pclust > 0.221) and there was no sign of ampli-
fied brain activity (SI Appendix, Fig. S4A), even when considering
the time courses in channels most sensitive to divergences for seen
and unseen targets (SI Appendix, Fig. S4B). Bayesian statistics
provided substantial evidence in favor of the null hypothesis (i.e.,
no difference in MEG amplitude between unseen correct and in-
correct trials) for all time windows (all Bayes’ factors < 0.24).
Because chance corresponded to 20.83% (i.e., 5/24 positions), a

non-negligible portion of the unseen correct trials might have
resulted from guessing, potentially obscuring differences between
unseen correct and incorrect epochs. To address this possibility, we
next estimated neural activity for unseen correct epochs after cor-
rection for chance responding (21). If these chance-free unseen
correct trials resulted from a miscategorization of seen epochs, we
should now observe clear signatures of conscious processing. This
was not the case. Chance-free brain activity was still in-
distinguishable from the one on unseen incorrect and unseen
correct trials (whole brain: all pclust > 0.252; critical time courses:
all Bayes’ factors < 0.76). Moreover, it remained strikingly dif-
ferent from a synthetic waveform, derived by proportionally mix-
ing the signals from seen and unseen incorrect trials (as would be
expected under the miscategorization hypothesis; SI Appendix,
Fig. S4B). The miscategorization hypothesis can therefore
be rejected.
Decoding analyses confirmed this conclusion. Training a linear

multivariate pattern classifier to discriminate seen from unseen
trials resulted in above-chance diagonal decoding from ∼120 ms
onwards [all pclust < 0.05; time bins: areas under the curve
(AUCs) > 0.54, pscorr < 0.005; Fig. 3 C, Top]. The temporal
generalization of each time-specific estimator to all other time
points supported this picture (Fig. 3 C, Bottom): Visibility
decoding was primarily confined to a thick diagonal, indicating
that conscious perception was associated with a chain of meta-
stable patterns of brain activity. Similar findings emerged when
training and testing a visibility classifier separately in the no-
rotation and rotation condition, or when generalizing from one
task to the other (SI Appendix, Fig. S5). Multivariate neural
signatures of conscious perception were thus stable across ex-
perimental tasks and in line with previous observations (9, 22).
Crucially, we found no discernable pattern when classifying

unseen correct vs. unseen incorrect trials (all pclust > 0.05; time
bins: AUCs < 0.51, pscorr > 0.05; Bayes’ factors < 0.28; SI Ap-
pendix, Fig. S4C). However, training a classifier to distinguish the
seen from the unseen correct epochs resulted in a similar, albeit
weaker, decoding time course and generalization matrix as when
directly training on all unseen or even just the unseen incorrect

trials (time bins: AUCs > 0.52, all pscorr < 0.05; Bayes’ factors >
2.07; SI Appendix, Fig. S6). As such, this pattern of results is
exactly opposite to what one would have expected in the case of a
miscategorization and suggests that information was genuinely
encoded in non-conscious WM.

Long-Lasting Blindsight Effect Results from an Active, Conscious
Process. What process allowed participants to mentally rotate
an unseen target? Was it a genuine non-conscious manipulation,
or did subjects first reinstate an active, conscious representation
of the estimated target position around the time of the cue and
then rotate this conscious guess? Disambiguating between these
alternatives first requires the identification of a neural marker of
active, conscious processing. Prior work has identified a rhythmic
signal—a suppression of power in the alpha (8 to 12 Hz) and low
(13 to 20 Hz) and high beta frequency bands (20 to 27 Hz)—as a
possible reflection of such a cognitive state (9, 23, 24).
We observed this signature in the current task. Across all trials

(both no-rotation and rotation), there was a prominent desynch-
ronization in alpha/beta frequencies over an extensive set of central
sensors, emanating primarily from parietal brain sources (Fig. 4A).
This desynchronization was reliably modulated by visibility. Power
decreased more strongly on seen than on unseen trials between
∼580 and 1,320 ms in the alpha (pclust = 0.032) and between
∼460 and 1,300 ms in the low beta band (pclust = 0.046; Fig. 4 B,
Top). Similarly, desynchronizations were more pronounced for seen
than for target-absent epochs in the low (pclust = 0.015) and high
beta bands (pclust = 0.030) between ∼280 and 940 and ∼820 and

Fig. 3. Typical neural signatures and dynamics of conscious processing for
seen targets. (A) Sequence of brain activations evoked by seen targets in
sensor (Top) and source space (Bottom). Each topography depicts the dif-
ference in amplitude between seen and unseen trials averaged over the time
window shown (i.e., Bl = −0.2 to 0 s, E = 0.1 to 0.3 s, P3b = 0.3 to 0.6 s, D1 =
0.6 to 1.76 s, D2 = 1.76 to 3.26 s, R = 3.26 to 3.5 s; magnetometers only).
Sources reflect z-scores of absolute difference with respect to a pre-stimulus
baseline. Black asterisks indicate sensors showing a significant difference
between seen and unseen trials at any point during the respective time
window as assessed by a Monte Carlo permutation test. (B) Average time
courses of seen (red) and unseen (blue) trials in that subset of magnetom-
eters having shown a significant effect in A. Shaded area illustrates SEM
across subjects. Significant differences between conditions are depicted with
thick black line (two-tailed Wilcoxon signed-rank test, uncorrected). Vertical
dotted lines index onset of the target (T), cue, and response screens. For
display purposes only, data were low-pass-filtered at 8 Hz. (C, Top) Average
time course of diagonal decoding of visibility (i.e., seen vs. unseen). Shaded
area denotes above-chance decoding as assessed by a one-tailed cluster-
based permutation analysis. Horizontal, dotted line represents chance level
at 50%. (C, Bottom) Temporal generalization matrix of the same visibility
decoder. Each horizontal row in the matrix corresponds to an estimator
trained at time t and tested on all other time points t′. The diagonal gray line
demarks classifiers trained and tested on the same time points (i.e., the di-
agonal estimator shown at the top). The thick black outline indexes above-
chance decoding as evaluated by a two-tailed cluster-based permutation
test. In both plots, vertical lines mark onset of the target (T), cue, and re-
sponse screens. For display purposes, data were smoothed with a moving
average of five samples (i.e., 40 ms).

Fig. 2. Behavioral evidence for manipulation of non-conscious information in
the behavioral (A) and MEG (B) experiment. Panels depict distributions of
participants’ localization responses with respect to target location (0°; positive
displacement = counterclockwise offset) as a function of task (no-rotation =
solid line, rotation = dotted line) and visibility (seen = warm colors, unseen =
cool colors). (Top Inset) The rate of correct responding and (Bottom Inset) the
precision of WM representations in all subjects with sufficient blindsight.
Horizontal dotted lines index chance at 4.17% (for single locations) and 20.83%
(for the region of correct responding), respectively. Shaded area and error bars
represent the SEM across participants. *P < 0.05, **P < 0.01, and ***P <
0.001 in a post hoc paired samples t test following a significant interaction.
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2,000 ms. There were no differences in the power profiles between
(i) unseen and target-absent trials (all pclust > 0.250) and (ii) unseen
correct and incorrect epochs (all pclust > 0.280; Fig. 4 B, Bottom),
suggesting that, irrespective of accuracy, all unseen trials resembled
those without a target. In line with our previous results (9), we thus
interpret the observed alpha/beta desynchronization as a potential
correlate of active, conscious processing.
We are now in a position to evaluate the remaining alternatives.

If the long-lasting blindsight effect resulted from a genuine, non-
conscious (activity-silent) form of rotation, alpha/beta desynchro-
nization for unseen targets should remain lower than its counterpart
on seen trials throughout the entire epoch. By contrast, if partici-
pants consciously rotated a guess, using a normal process of active
mental rotation, a more pronounced surge of desynchronization
should be seen after the cue for unseen than for seen targets, ren-
dering seen and unseen trials indistinguishable from this point for-
ward. Differences in desynchronization between seen and unseen/
target-absent trials should only exist during the pre-cue phase. Note
that, whichever of these post-cue patterns is to be observed, it may
be present on both no-rotation and rotation trials: No-rotation cues
occurred on only a minority of one-third of trials. As such, subjects
could have capitalized on the predictable temporal structure of the
task with a fixed delay between the target stimulus and the rotation
cue to make a conscious guess in anticipation of the upcoming
cue, without yet knowing whether it would signal a rotation or
no-rotation. We do thus not necessarily expect there to be any
differences in the post-cue effects between no-rotation and rotation
trials and, as such, conducted the following analysis on all trials.
Our results support the active, conscious manipulation hypothesis

(Fig. 4C). Following an initial divergence during the early pre-cue
maintenance phase (SI Appendix, Fig. S7A–C), differences in spectral
profiles between seen, unseen, and target-absent trials vanished by
∼1 s. All epochs in the no-rotation and rotation condition were
characterized by a prominent, sustained desynchronization in the
alpha and low and high beta frequencies. This suppression in power
varied as a function of subjective visibility (i.e., seen vs. unseen) and
time (i.e., pre-cue vs. post-cue delay). It was much more pro-
nounced during the post-cue than during the pre-cue maintenance

period (i.e., main effect of time: all Fs > 18.6, all Ps < 0.001).
Crucially, this difference between pre- and post-cue power was also
larger for unseen than for seen targets in the alpha and low beta
bands (interaction: all Fs > 4.01, all Ps ≤ 0.05), and marginally so in
the high beta band [interaction: F(1, 29) = 2.95, P = 0.097; Fig. 4D].
No such interaction emerged when contrasting the unseen correct
with the unseen incorrect trials (i.e., interaction: all Fs < 2.83, all
Ps > 0.103; Fig. 4D), as these conditions displayed largely similar
power profiles throughout the entire epoch (SI Appendix, Fig. S7
D–F). Note that all of these observations also held when
restricting our analysis just to the rotation trials [seen vs. unseen:
all interaction Fs (1, 29) > 6.5, all Ps < 0.016; unseen correct vs.
unseen incorrect: all interaction Fs (1, 29) < 0.3, all Ps > 0.592].
We thus observed a reliable distinction between seen and unseen

brain states only during the maintenance period preceding the ro-
tation cue (up until at least 1 s). Unseen targets were accompanied
by a significantly smaller desynchronization in the alpha and low and
high beta frequencies, but this difference disappeared∼500 ms before
the presentation of the symbolic rotation cue (at 1.5 s) and persisted
throughout the post-cue delay. At this critical point in the task then,
when on the majority of the trials a mental rotation was required,
unseen trials appeared to be indistinguishable from seen trials. The
fact that this alpha/beta desynchronization following unseen targets
appeared even before the symbolic rotation cue might either have
resulted from temporal smoothing inherent to time-frequency anal-
yses, or, as speculated before, from an active process of temporal
anticipation of the cue encouraged by the fixed delay between target
and cue.
Inasmuch as our analysis is sensitive enough to pick up potentially

weak differences in power, these results thus suggest that, irre-
spective of whether they were simply maintaining or rotating the
location of the target, subjects were engaged in a comparable and
active mental process for seen and unseen targets after the presentation
of the cue. Together with (i) the observed pre-cue characteristics of this
alpha/beta desynchronization rendering it a plausible signature of
conscious processing and (ii) our previous observation that, in the
context of pure maintenance, no such alpha/beta desynchronization
emerges for unseen targets (9), the present findings are compatible

Fig. 4. Time-frequency markers of conscious pro-
cessing emerge around the time of the cue on un-
seen trials. (A) Average pre-cue (0.6 to 1.8 s; Bottom)
and post-cue (1.8 to 3.3 s; Top) desynchronization in
the alpha (8 to 12 Hz; Left), low beta (13 to 20 Hz;
Middle), and high beta (20 to 27 Hz; Right) frequency
bands in magnetometers and source space (in deci-
bels, relative to pre-stimulus baseline). (B, Top) Alpha
band activity (8 to 12 Hz) related to consciously
perceiving the target square (i.e., seen vs. unseen) is
shown in magnetometers and source space (in deci-
bels, relative to pre-stimulus baseline) as a function
of time bin (i.e., Bl = −0.2 to 0 s, E = 0.1 to 0.3 s,
P3b = 0.3 to 0.6 s, D1 = 0.6 to 1.76 s, D2 = 1.76 to
3.26 s). Black asterisks denote cluster of sensors dis-
playing a significant difference at any point in time
during the respective time window (as evaluated by
a Monte Carlo permutation test). (B, Bottom) Same
as B, Top, but for the contrast between unseen cor-
rect and unseen incorrect trials. (C) Average time-
frequency power relative to baseline as a function
of visibility and target presence in a subset of central
magnetometers. Vertical lines demark onset of tar-
get (T) and cue presentation. (D) Plots depict average
pre-cue (D1) and post-cue (D2) power in the same
group of sensors as in C as a function of frequency
(i.e., alpha, low beta, and high beta) and visibility
[i.e., seen (S), unseen (U), unseen correct (UC), and
unseen incorrect (UI)]. Error bars represent SEM
across subjects. Asterisks denote significant interac-
tion in a repeated-measures ANOVA at P < 0.05.

4 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1820730116 Trübutschek et al.



with the notion that participants solved the mental rotation task by
reinstating an active, conscious estimate of the memorized target
location. Additional multivariate analyses further support this in-
terpretation (SI Appendix, Supplementary Results and Fig. S8).

The Location of Unseen Targets Can Only Be Tracked Transiently. To
test this conclusion further, we used multivariate decoding to track
the neural representations of the (estimated) target and response
locations during the encoding, maintenance, manipulation, and
retrieval of seen and unseen targets. We first trained a regression
model to predict target angle from participants’ whole-brain ac-
tivity separately for each time point. To avoid spatial confounds
and maximize statistical power, we fitted estimators on target-
present trials across all rotation and visibility conditions. Given
our choice of rotation angles (−120°, 0°, and +120°), the correct
response location was strongly decorrelated from the target lo-
cation only when pooling across all trials. We then evaluated
model performance on left-out subsets of epochs (Methods). Note
that none of the findings changed qualitatively when testing sep-
arately on the rotation and no-rotation task (SI Appendix, Fig. S9)
and that eye movements did not contribute significantly to these
results (SI Appendix, Supplementary Results and Fig. S10).
Starting at∼80 ms, estimator performance for seen targets steadily

rose until∼264 ms and then slowly decayed toward chance at ∼1.46 s
(Fig. 5A). Following the cue, a rebound of position-selective activity
was observed and was then fairly sustained for the remainder of the
trial (pclust < 0.05; time bins: Ws > 417.0, pscorr < 0.005, Bayes’ fac-
tors > 77.93). Thus, in line with previous findings (9), seen targets
were initially encoded via active firing, then this activity decayed and
was reactivated throughout most of the post-cue delay period.
A different picture emerged for unseen targets. While target

location was again actively stored early on, this representation was
weaker than the one for seen targets (paired-samples Wilcoxon
signed rank test: pre-cue time bins:Ws > 370.0, pscorr < 0.02, Bayes’
factors > 3.42) and decayed quickly, vanishing entirely by ∼920 ms
(pclust < 0.05; pre-cue time bins: Ws > 351.0, pscorr < 0.035, Bayes’
factors > 7.34). During the post-cue delay, although not evident in
the actual decoding time course (pclust > 0.05; Fig. 5A), the esti-
mator’s performance over the entire time window remained above
chance (rads = 0.03 ± 0.01,W = 355.0, pcorr = 0.025, Bayes’ factor =
6.41) and at levels comparable to those on seen trials (W = 315.0,
pcorr = 0.460, Bayes’ factor = 0.86). A more fine-grained analysis
with a moving average of 100 ms revealed that this effect was driven
primarily by the initial phase of the delay, up to ∼2.6 s. We observed
no modulation of this pattern of findings by accuracy (time bins:
Ws < 279.0, all pscorr > 0.950, Bayes’ factors < 0.41; Fig. 5 A, Insets).
In summary, whereas seen targets were maintained with per-

sistent, albeit decaying, activity, unseen targets elicited weaker
position-related activity that quickly decayed to baseline level
(activity-silent WM). During the post-cue phase, once participants
actively maintained or manipulated their WM contents, the rep-
resentation of seen targets was reactivated and sustained. Unseen
targets may also have benefitted from a short-lived revival, but their
decoding was much weaker, perhaps because participants made
more errors and therefore reinstated the actual target location on
only a subset of unseen trials.

An Estimate of the Location of Unseen Targets Is Reinstated before
the Rotation Cue.On more than half of unseen trials (62.0 ± 2.8%),
subjects chose an incorrect location. What determined participants’
final response on those trials? As laid out in the introduction, if
target locations really had been stored in an activity-silent format, we
hypothesize that, around the time of mental rotation, these should
have been reactivated (i.e., reinstated into active neural firing), al-
beit with occasional errors, and subjects should then have attempted
to consciously rotate this guess. According to this hypothesis, around
the time of the cue, brain signals should contain a decodable rep-
resentation of the “pre-rotation location”, that is, the spatial location
that, given the subjects’ response, would have been the location
guessed and rotated. On no-rotation trials, this location coincided
with response location, whereas on rotation trials it corresponded to
the position of participants’ response rotated 120° in the direction
opposite to what the cue had instructed. Detecting the presence of
such a pre-rotation representation on unseen trials would support
our time-frequency analyses and the hypothesis that, around the
time of the cue, subjects attempted to recover a conscious repre-
sentation of the target and then consciously rotated this guess. If,
however, unseen performance was based on a genuine manipulation

of activity-silent WM without the intermediate step of reactivation,
then such decoding should fail.
On seen trials, decoding the pre-rotation location was possible,

and the time course was similar to the one for the true position of
the target (unsurprisingly given that most seen trials were correct;
Fig. 5B). From ∼56 ms onwards, the pre-rotation location was coded
in activity-based brain states (pclust < 0.05; time bins: Ws > 408.0,
pscorr < 0.005, Bayes’ factors > 517.26), first peaking at ∼264 ms
(rad = 0.18 ± 0.02) and then slowly decaying before being revived by
the rotation cue.
Crucially, pre-rotation location could also be decoded on unseen

trials. Shortly after the target, the estimator’s performance began to
rise and first exceeded chance at ∼376 ms (rad = 0.052 ± 0.015).
Decoding persisted until ∼1.8 s (pclust < 0.05; P3b time window and
pre-cue delay: Ws > 382, pscorr < 0.005, Bayes’ factors > 78.83),
although estimator performance itself did not drop until ∼2.5 s.
Indeed, a follow-up analysis with narrower 100-ms time windows
suggested that the pre-rotation location may have been maintained
until ∼2.2 s (P < 0.05, uncorrected). There was again no evidence
for a modulation of this pattern as a function of accuracy (time bins:
Ws > 120.0, pscorr > 0.600, Bayes’ factors < 1.44; Fig. 5 B, Insets).
As predicted, while the representation of the pre-rotation loca-

tion was stronger for seen than for unseen targets early on (early
and P3b time window: Ws > 450.0, pscorr < 0.005, Bayes’ factors >
124,688.30), this difference started to diminish during the pre-cue
maintenance phase (W = 347.0, pcorr = 0.085, Bayes’ factor = 1.76)
and vanished entirely by the last second before the rotation cue
(moving average of 100 ms: Ws < 359.0, pscorr > 0.05, Bayes’ fac-
tor < 1.32). Participants’ location estimates were therefore similarly
represented on both seen and unseen trials during the last part of
the pre-cue maintenance period. In conjunction with the results
from the time-frequency analyses (i.e., emergence of signatures of
conscious processing for unseen targets), these findings are com-
patible with the proposal that, even on unseen trials, subjects
mentally rotated an active, conscious guess of a target location.

An Active Representation of Target Location Is Mentally Rotated.We
last trained and tested a regression model to decode response
location. On seen trials, response location emerged reliably only in
the second half of the post-cue delay period (Fig. 5C). Starting at
∼2.38 s, decoding performance gradually built up until its peak at
the very end of the epoch (pclust < 0.05; post-cue time bins: Ws >
440.0, Pscorr < 0.005, Bayes’ factors > 21,997.68). There was
substantial temporal overlap between the decoding of the target/
pre-rotation location and the response position: As the former
started to decay around ∼2.5 s, the latter slowly began to rise.

Fig. 5. Tracking a mental rotation. (A) Time courses of average decoding of
target location on seen (red), unseen (dark blue), unseen correct (light blue),
and unseen incorrect (blue) trials. Shaded areas represent above-chance
performance as assessed by a one-tailed cluster-based permutation test.
Horizontal dotted lines index chance. Event markers denote the onset of the
target (T), cue, and response screens. For illustration purposes, data were
smoothed with a moving average of five samples (i.e., 40 ms). (B) Same as in
A, but for pre-rotation location. (C) Same as in A, but for response location.
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Fig. 6 further shows the probability density distributions for decoded
target and response locations. On seen trials, before the cue, decoder
estimates for target angle were strongly concentrated around the target
location, irrespective of rotation condition and direction (resultant
vector lengths > 0.41; Rayleigh tests for nonuniformity: zs > 5.09, Ps <
0.005; nonparametric multisample test for equal medians: Ps > 0.302).
This picture changed following the rotation cue. While angle estimates
on no-rotation trials stayed fairly centered on the original target lo-
cation (resultant vector lengths > 0.37; Rayleigh test: z > 4.01, P <
0.017), their counterparts for clockwise and counterclockwise rotations
began to shift toward the respective correct response positions (re-
sponse period: clockwise rotation: Mcirc = 37.3°; resultant vector
length= 0.49; one-sample test against a mean direction of 0°: P< 0.05;
counterclockwise rotation:Mcirc = 95.6°; resultant vector length = 0.31;
one-sample test against a mean direction of 0°: P < 0.05). During the
response period, all three distributions were characterized by a dif-
ferent center of mass (nonparametric multisample test for equal me-
dians: Ps < 0.05), located in close proximity to the expected final
position. Depending on the direction of the rotation, the representa-
tion of the original target location was progressively transformed into a
representation of the response position. On average, a mental rotation
following seen targets was reflected by an active transition period,
during which the stimulus code was progressively replaced by the re-
sponse code. Note, however, that while such a smooth transition was
visible in the mean we cannot determine here whether continuous or
discrete transitions occurred on individual trials (25).
We next considered the unseen trials. If subjects performed a

conscious rotation of (an estimate of) unseen locations, then one
would predict the response estimator to perform comparably on
seen and unseen targets. This was indeed the case (Fig. 5C).
Decoding response location on unseen trials yielded consistent
above-chance performance from ∼2.84 s onwards (pclust < 0.05;
post-cue time bins: Ws > 410.0, pscorr < 0.005, Bayes’ factors >
594.74), again beginning to rise around the time the model for
the pre-rotation location had faded (cf. time courses in Fig. 5 B
and C). As would be expected if the same underlying process
were responsible for the generation of responses across all ex-
perimental conditions, we observed no differences as a function
of accuracy (time bins: Ws < 314.0, pscorr > 0.480, Bayes’ fac-
tors < 0.81) or visibility (time bins: Ws < 334.0, pscorr > 0.600,
Bayes’ factors < 2.45). Pre-rotation and response locations could
also be tracked on unseen trials, albeit, as expected, with reduced
accuracy (SI Appendix, Fig. S11). The transformation from one
representation into another therefore appeared to have been
comparable for seen and unseen targets, in both cases relying on
decodable activity patterns rather than on activity-silent brain states.

Discussion
Recent work has challenged classical views of WM as a purely
conscious process based on persistent neural firing. Information
may also be stored in non-conscious and/or activity-silent WM,
without any accompanying neural activity, via slowly decaying
changes in synaptic weights (9, 12–16), and in the absence of sub-
jective awareness (8–10, 26). However, in previous research, only
the short-term maintenance of information has been explored, while
its mental manipulation, a key feature of WM, has been ignored.
Here, we show that, whether or not information was consciously

perceived, manipulating it was associated with a prior re-
instatement of an active neural representation, accompanied by
signatures of a conscious state. These findings question the term
“non-conscious working memory” and suggest that WM manipu-
lation requires a conversion from activity-silent to active WM.

Manipulation as a Limit for Non-conscious Silent Processes. It has
proven difficult to put upper bounds on the depth of non-con-
scious processing. Non-conscious signals tend to affect a wide
range of behaviors and trigger activity in many different brain
areas, including the prefrontal cortex (27, 28). Recent work on
non-conscious WM has even called into question basic assump-
tions regarding the nature of non-conscious processes, suggesting
that non-conscious stimuli may be maintained much longer than
previously thought (7–10, 26).
Our behavioral results support this conclusion, as they provide

evidence for non-conscious mental rotation. On unseen trials, sub-
jects reported the correct response position much better than
chance after several seconds, irrespective of whether they had to
maintain the original target or rotate its position. We replicated this
long-lasting blindsight effect in two independent experiments and,

as such, seemingly expanded the range of possible non-conscious
WM processes (6, 8–10).
Our neural data indicated that visibility reports were genuine.

Before the cue, we observed typical markers of conscious processing
almost exclusively for seen targets. Brain activity was amplified
during the P3b time window (20) and participants’ visibility was re-
liably decodable (7, 9). Moreover, there was a sustained desynch-
ronization of alpha/beta frequency, which became even more
pronounced after the rotation cue, thereby coinciding with the most
demanding task phase (9, 29, 30). By contrast, for unseen targets,
signatures of conscious processing were absent or markedly reduced
in comparison with the ones on seen trials early on. There was
neither an ignition of brain activity during the P3b time window nor a
comparably strong alpha/beta desynchronization. These findings, in
line with our previous work (9), show that unseen trials were genuine
and did not correspond to a subset of miscategorized seen trials.
However, those neural signatures changed drastically around the

time of the cue, suggesting that an estimate of target location was
reactivated on all trials in anticipation of the likely following rotation.
Slightly before the cue, around ∼1 s, an alpha/beta power desynch-
ronization, previously not present, appeared even for unseen targets
and reached similar levels as on seen trials during the post-cue
maintenance period. Starting at more or less the same time (i.e.,
around ∼500 ms), a decodable representation of the pre-rotation
location emerged. In conjunction with prior work (9), both findings
suggest that participants reinstated an active representation of their
best guess about target location, in anticipation of the upcoming
rotation cue. Given that alpha/beta desynchronization, in the present
and past work (e.g., ref. 9), also appeared as a plausible signature of
conscious processing, robustly distinguishing seen from unseen/target-
absent trials shortly after target onset, we further hypothesize that,
around the same time, this reactivated estimate regained access to
consciousness and no longer relied on non-conscious WM processes.
On unseen trials, the weak activity-silent representation of the

target may have competed against other ongoing noise fluctua-
tions in the brain, resulting in a mixture of trials where decision
was solely based on stochastic events (31) and others biased to-
ward the correct target location. Variability across trials and
participants and the temporal smoothing inherent to time-
frequency analyses precludes a definitive determination of the
exact onset of the alpha/beta desynchronization on unseen trials,
but the results indicate that this transition already occurred shortly
before the symbolic rotation cue. To save time, given the fixed
delay between the presentation of the target and the cue, partic-
ipants may have guessed the identity of the unseen target shortly
before the moment they knew the rotation cue would appear.
In conjunction with previous work (8, 9, 26), these findings

highlight the limits of non-conscious WM. While information may
be temporarily stored nonconsciously, manipulating items is as-
sociated with a reinstatement of a conscious representation. Our
results may help circumscribe the boundaries of non-conscious
processing. Consciousness has been theorized and empirically
demonstrated to be a prerequisite for serial tasks, such as the
chaining of mental operations (32). We here observed that such
chaining may remain possible even if the initial input was not
represented consciously, but only inasmuch as subjects willfully
operate on previously non-conscious information. Future re-
search might expand on this work and attempt to more strongly
encourage the reliance on non-conscious processing by, for in-
stance, rendering the task cues subliminal.

The Complementarity of Active and Silent Processes in WM.Our data
speak to the current debate on the nature of WM representa-
tions in the brain. Traditional models emphasize stable, persis-
tent activity as the main candidate mechanism supporting WM
(3, 4). Recent investigations point toward a more dynamic view,
with the contents of WM being maintained in changing patterns
of neural activity or activity-silent brain states (9, 12–14, 16, 33).
Together with our previous work (9), our current results suggest

that sustained neural activity and activity-silent mechanisms may
accommodate different processes. Storage of information in WM
need not require neural activity. Without the manipulation re-
quirement in our task, delay-period activity vanished for unseen
and was intermittent for seen targets (9). Such prolonged activity-
silent periods occurred less frequently here, perhaps because
participants tried to more actively retain information about the
target in preparation for the required mental rotation. However,
even in the present setting, target-related neural activity first
decayed toward chance before being reactivated by the cue.
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By contrast, after the cue, once subjects were, on the majority of
trials, manipulating their WM contents, neural activity was sus-
tained, with the representation of the response emerging while the
target representation slowly faded. Importantly, we observed a similar
pattern of results for unseen targets. As decodability of target location
vanished, it was replaced by the emergence of the guess (i.e., pre-
rotation location), which was maintained until the rise of response-
related neural activity. The slightly different post-cue time courses
observed for the decoding of the pre-rotation location on seen and
unseen trials may not indicate any meaningful difference in the type
of operation deployed by the participants, but likely reflected the
differential levels of certainty with which subjects performed the
mental rotation, having a clear starting point only on seen trials.
Taken together, we propose that active and activity-silent pro-

cesses make distinct contributions to WM. WM maintenance (just
like long-term memory storage) can be achieved without accompa-
nying neural activity via activity-silent mechanisms. WM manipula-
tion appears to depend on a reactivation of active neural firing
(similar to long-term memory retrieval). Recent evidence from a
computational model corroborates this conclusion by demonstrating
that, while short-term synaptic plasticity may support short-term
maintenance, persistent neuronal activity automatically emerges from
learning during active manipulation (34). Moreover, similar divisions
of labor between activity-silent and activity-based brain states have
recently been observed for the active selection vs. maintenance of
WM contents (35). All of these data lend support to the emerging
view that WM is best conceptualized as an activity-induced tempo-
rary and flexible shift in the functionality of a network (16).

Tracking Intermediate Representations during a Mental Rotation. A
last aspect of our work that deserves attention concerns the act of

mental rotation itself. Numerous studies support the idea that
mental rotation depends on analog spatial representations, with the
initial representation progressively being rotated through in-
termediate steps. Reaction times have been found to increase in
near-linear fashion with the size of the rotation angle (36), and
activity in spatially mapped brain areas has been reported to be
modulated parametrically by angular distance (37). Recordings of
single-neuron activity from the motor cortex during a motor ro-
tation task also suggest a gradual rotation of a neural population
vector (38).
Our results indicate that such a transformation of neural repre-

sentations is now decodable from humanMEG recordings. On seen
trials, following the rotation cue, average decoder estimates of
target and response angle progressively moved away from the
original target location toward the expected response position,
seemingly passing through a series of intermediate locations. A
similar transformation may also have been present for the pre-
rotation location for unseen targets, although data were too noisy to
support any definitive conclusions. These findings are compati-
ble with the view that locations intermediate between the target/
pre-rotation position and the response location were coded and
represented in the brain. However, this interpretation is based
on an analysis of multivariate estimates averaged across trials
and participants. Isolated bursts of activity, occurring at different
time points and coding for discrete spatial positions, if averaged
over many events, might also result in the apparent smooth
transition we observed here (39, 40). Future research relying on
single-trial analyses will be needed to disambiguate between
these alternatives.

Fig. 6. Tracking a mental rotation on seen trials. (A,
Left) Time courses of probability density distribu-
tions of the angular distance between the estimates
of a decoder trained with target angle and actual
target location are shown as a function of rotation
condition. For display purposes, data were smoothed
with a moving average of 12 samples (i.e., 96 ms).
The overlaid black line illustrates the evolution of
the circular mean of the individual distributions (also
smoothed). The shaded area reflects circular stan-
dard variation across subjects. Vertical event markers
denote the onset of the target (T), cue (C), and re-
sponse (R) screens, and horizontal markers index
correct response positions after rotation. A, Right,
same as in A, Left, except for angular distance be-
tween the estimates of a decoder trained with re-
sponse angle and actual target location. (B) Circular
means of the above distributions as a function of
rotation condition and time bin (i.e., E = 100 to
300 ms, P3b = 300 to 600 ms, D1 = 0.6 to 1.76 s, D2 =
1.76 to 3.26 s, R = 3.26 to 3.5 s). Error bars reflect
circular SD. Asterisks inside markers denote signifi-
cant deviation from mean direction of 0 (as assessed
by a circular equivalent of a one-sample t test) and
asterisks on top significant differences in median
direction between conditions (as assessed by a cir-
cular equivalent to the Kruskal–Wallis test; black =
clockwise vs. counterclockwise; red = clockwise vs.
no-rotation; violet = counterclockwise vs. no-rotation).
*P < 0.05, **P < 0.01, ***P < 0.001.
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Conclusion
In the wake of recent proposals of non-conscious and/or activity-
silent WM, we have identified an important boundary condition:
While the storage of information in WM requires neither con-
sciousness nor persistent activity, the manipulation of WM contents
is associated with both. This conclusion is at odds with the very idea
of non-conscious WM. We therefore propose “activity-silent short-
term memory” as an alternative term for the phenomenon of long-
lasting blindsight. This observation may also help reconcile current
debates on the nature of WM. WM is a generic term that refers to a
conglomerate of cognitive processes including attentional selec-
tion, storage, and manipulation. Active and activity-silent brain
states both contribute to these behaviors, and an essential goal for
future research will be to further disentangle these differential
contributions.

Methods
Participants. All experimental procedures had been approved by the Ethics
Committee on Human Research at NeuroSpin (Gif-sur-Yvette, France).
Twenty-three healthy volunteers (4 men; Mage = 23 y, SDage = 2.5 y) were
included in the behavioral experiment. Another 30 participants (14 men;
Mage = 25.4 y, SDage = 3.8 y) were entered in the MEG analyses. All subjects
gave written informed consent and received up to 80V as compensation.

WM Task.We adapted our previous paradigm (9) to probe participants’ ability
to manipulate WM representations under varying subjective visibility (Fig. 1).
After a 1-s fixation period, a target square was flashed for 17 ms in 1 of
24 circular locations and then masked (233 ms). Mask contrast was calibrated
separately for each subject to yield approximately equal proportions of seen
and unseen trials (SI Appendix, Supplementary Methods). Halfway through a
3-s delay, a central cue instructed participants as to the specific task. A third
of the trials, indexed by an equal sign, served as a control, requiring subjects
to maintain the target position. On the remainder of the trials, participants
were to mentally rotate the original target location. While the uppercase
letter D necessitated a 120° clockwise rotation (one-third of the trials), the
letter G indicated a 120° counterclockwise rotation (1/3 of the trials). Sub-
jects responded by either speaking (MEG experiment; 2.5 s) or typing on a
standard AZERTY keyboard (behavioral experiment; 3 s) the letter—out of a
set of 24 randomly presented in all possible locations— corresponding to the
desired position. A location response was required even when participants
had not seen the target; in that case, they were instructed to guess the
correct final position. Subjects then rated target visibility on the 4-point
Perceptual Awareness Scale (19), using either the number-pad keys of the
computer keyboard (behavioral experiment; 2 s) or the buttons of a non-
magnetic response box (fiber optic response pad; Cambridge Research Systems
Ltd; MEG experiment; 2 s). To qualify as unseen (visibility = 1), participants
were neither to have any visual experience of the target nor a hunch con-
cerning its location. All other subjective impressions were to be categorized as
seen (visibility 2, 3, or 4). Intertrial intervals ranged between 333 and 666 ms
(MEG experiment) or between 1 and 2 s (behavioral experiment). A central
fixation cross was shown throughout the entire trial, and 20% target-absent
catch trials were included to allow for the isolation of brain activity specific to
the target.

Experimental Protocol. Each experimental session began with written and
verbal instructions. Subjects then performed either 60 (behavioral experi-
ment; one block) or 90 training trials (MEG experiment; two blocks). In
contrast to the main experiment, during this training session the target was
always visible and visual feedback on localization and rotation performance
was provided at the end of each trial (2.5 s): The target location, connected to
the correct response position (in green ink), was displayed. If the participant
had answered incorrectly, this location was also shown in red ink. Following
the training, participants completed the calibration and WM task. While the
former was composed of 125 trials (one block) in the behavioral and 120 trials
(one block) in the MEG experiment, the latter consisted of 180 (two blocks;
two repetitions of each of the three rotation conditions/location) and
450 trials (10 blocks; five repetitions of each of the three rotation conditions/
location), respectively.

Behavioral Analyses. We followed our previous approach (9) to evaluate WM
performance. Repeated-measures ANOVA was applied to three indices of
objective performance. (i) Accuracy refers to that proportion of trials that
falls onto the correct response location and serves as a measure of the
amount of information stored in WM (chance = 1/24, i.e., 4.17%). (ii) The
rate of correct responding also reflects the quantity of information held in

WM but is more refined than accuracy alone, as it accounts for small errors in
subjects’ ability to identify the correct response location. It was defined as
the proportion of trials within ± two positions of the correct response lo-
cation (i.e., ±30°; chance = 5/24, i.e., 20.83%). (iii) As an estimate of the
precision of WM representations, we computed the SD of that part of the
distribution of participants’ spatial responses that corresponded to genuine
WM (as opposed to random guessing within the region of correct
responding; ref. 9). Only subjects with sufficient blindsight (i.e., P < 0.05 in a
χ2 test against chance) when collapsing across all experimental conditions
were included in this analysis.

MEG Acquisition and Preprocessing. We recorded participants’ brain activity
continuously during the WM paradigm with a 306-channel, whole-head
magnetometer by Elekta Neuromag. MEG sensors were arranged in
102 triplets, comprised of one magnetometer and two orthogonal planar
gradiometers, and MEG signals were acquired at a sampling rate of 1,000 Hz
with a hardware band-pass filter between 0.1 and 330 Hz. To allow for
offline rejection of artifacts induced by eye movements and heartbeat, we
monitored these functions with vertical and horizontal electrooculograms
and electrocardiograms. Subjects’ head position inside the MEG helmet was
inferred at the beginning of each run with an isotrack Polhemus Inc. system
from the location of four coils placed over frontal and mastoïdian skull areas.

We adapted Marti et al.’s (22) preprocessing pipeline. First, we identified
bad MEG channels visually in the raw signal and then employed MaxFilter
software (ElektaNeuromag) to compensate for head movements between
experimental blocks, suppress magnetic interference from outside the sen-
sor helmet, and interpolate bad channels (41). We then switched to Fieldtrip
for further preprocessing (42). Continuous data were first epoched with
respect to target onset (i.e., −0.5 to 3.5 s). The resulting trials were down-
sampled to 250 Hz and any artifacted epoch was removed by means of a
semiautomatic procedure: We visually inspected variance of the MEG sig-
nals to identify and reject contaminated epochs. In a last step, we per-
formed independent component analysis separately for each channel type
to remove any residual artifacts related to eye movements or cardiac
activity.

Depending on the nature of the subsequent investigation, further pre-
processing steps then diverged. For univariate analyses based on evoked
responses (i.e., ERFs), we only low-pass-filtered the MEG signal at 30 Hz.
However, to extract the spectral component of our data, we relied on un-
filtered epochs: Power estimates between 1 and 99 Hz (in 2-Hz steps) were
obtained by convolving overlapping segments of the data with a frequency-
independent Hann taper (window size: 500 ms, step size: 20 ms). Multivariate
analysis required additional downsampling of the signal to 125 Hz. After all
necessary transformations and decompositions, we applied a baseline cor-
rection before any analysis between −200 and 0 ms.

Estimating Chance-Free Brain Activity for Unseen Correct Trials. To account for
chance responding on unseen correct trials, we employed a strategy de-
veloped by Lamy et al. (21) and first calculated the proportion of unseen
correct trials correctly responded to by chance separately for each subject:

PUC = ðð1− rÞ=ð19=24ÞÞ * ð5=24Þ, where PUC =%UnseenCorrectChance and r
= rate of correct responding.

[1]

We then estimated brain activity on the unseen correct (UC) trials reflecting
chance-free responding, assuming that the actual observed amplitude A was
a linear combination of genuine blindsight and random guessing:

AðUCObservedÞ= PUC *Að%UCChanceÞ+ ð1− PUCÞ *Að%UCChanceFreeÞ [2]

AðUCChanceFreeÞ= ½AðUCObservedÞ− PUC *Að%UIObservedÞ$=
ð1− PUCÞ, assuming that AðUCChanceÞ=Að%UIObservedÞ.

[3]

Similarly, we then reverted the process, mixing activity from seen trials with
that from unseen incorrect (UI) trials, to obtain an estimate of what brain
activity might have looked like under the miscategorization hypothesis:

A
!
UCMiscategorized

"
= ð1−PUCÞ *AðSeenObservedÞ+ PUC *Að%UIObservedÞ. [4]

Source Reconstruction. Structural magnetic resonance scans were available for
29 of our 30 subjects, having been acquired with a 3D T1-weighted spoiled
gradient recalled pulse sequence (voxel size: 1 × 1 × 1 mm; repetition time:
2,300 ms; echo time: 2.98 ms; field of view : 256 × 240 × 176 mm; 160 slices).

8 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1820730116 Trübutschek et al.



To identify the anatomical locations of the MEG signals in these participants,
we first segmented subjects’ T1 images into gray/white matter using FreeSurfer
and then reconstructed the cortical, scalp, and head surfaces in Brainstorm
(43). Coregistration between the anatomical scans and the MEG data were
based on participants’ head position in the MEG helmet. Subject-specific
forward models relied on analytical models with overlapping spheres. Separately
for each condition and participant, we modeled neuronal current sources with a
constrained weighted minimum-norm current estimate (depth-weighting factor:
0.5). Noise covariance matrices were computed from ∼5-min-long empty-room
recordings, measured immediately after each subject. Before group analysis,
single-trial source estimates were either (i) averaged within each subject and
condition, transformed into z-scores relative to our pre-stimulus baseline (−0.2 to
0 s), rectified, and spatially smoothed over 5 mm or (ii) in the case of time-
frequency decompositions, transformed into average power in the alpha (8 to
12 Hz) and low (13 to 20 Hz) as well as high beta (20 to 27 Hz) bands with complex
Morlet wavelets. We then computed the contrasts of interests and projected the
resulting participant-specific source estimates on a generic brain model built from
the standard template of the Montreal Neurological Institute. Group averages for
spatial clusters of at least 50 vertices and thresholded at 50% of the maximum
amplitude are shown for each timewindow under consideration (cortex smoothed
at 60%).

Multivariate Pattern Analysis. We aimed at predicting the identity and/or
value of a specific categorical (i.e., visibility or accuracy) or circular (i.e., target,
pre-rotation, or response location) variable (y) from single-trial brain activity
(X) separately for each participant and time point. Relying on the Scikit-
Learn package for MNE 0.15 (44), we (i) fitted a linear estimator w to a
training subset of X (Xtrain) to isolate the topographical patterns best dif-
ferentiating our experimental conditions, (ii) predicted an estimate of y (y)̂
from a test set (Xtest), and (iii) compared the resulting predictions to the true
value of y either for the entire set of labels (score(y, y)̂) or a specific subset
(subscore(y, y)̂).

For analyses based on circular data, models were always trained on all
available target-present trials. That is, estimators were fitted on all three
rotation conditions (i.e., clockwise rotation, no-rotation, and counterclock-
wise rotation) and both visibilities (i.e., seen and unseen). Performance was
then evaluated only for that subset of test trials currently under investigation.
For instance, decoding scores for response location on unseen trials were
obtained by first training the estimator with data from all target-present
trials and then applying this model only to trials with unseen targets. In
contrast to an analysis, in which the train and test sets come from the very
same subset of trials, this approach offers two main advantages. First, it
augments the number of trials available to train the model and, as such,
maximizes statistical power and increases the ability to detect small effects.
Second, keeping all rotation and visibility conditions also decorrelates the
individual representations of the target, pre-rotation, and response locations.

Two main classes of estimators were used: a linear support vector machine
(SVM) for categorical and a combination of two ridge regressions for circular
data. Whereas the former generated a continuous output in the form of the
distance between the hyperplane (w) and the respective sample of y, the
latter first separately fit the sine (sin(y)) and cosine (cos(y)) of the spatial
position in question and then estimated an angle from the arctangent of the
individual predictions [y ̂ = arctan2(yŝin, yĉos)]. To increase the number of in-

stances available for each circular label, we averaged neighboring spatial
locations. Before model fitting, all channel-time features (X) were z-score-
normalized, and, for any analysis involving SVMs, a weighting procedure
was applied to counteract the effects of potential class imbalances.

To avoid overfitting, we embedded this sequence of analysis steps in a 5-
fold, stratified cross-validation procedure: For nonindependent training and
test sets, estimators were iteratively fitted on four-fifth of the data (Xtrain)
and generated predictions for the remaining one-fifth (Xtest). By contrast,
when generalizing from one task to the other (i.e., no-rotation to rotation
condition), estimators from each training set were directly applied to the
entire test set and the respective predictions averaged. Within the same
cross-validation loop, we also evaluated time generalization: Each estimator
was first trained at time t and then tested at all other time points, resulting
in a square matrix of training time × testing time.

We summarized within-participant, across-trial decoding performance of
categorical data with the AUC (range: 0 to 1; chance = 0.5). Two different
summary statistics were used for circular decoding. (i) For nondirectional
analyses, the mean absolute difference between the predicted (y)̂ and actual
angle (y) across all trials was first computed (range: 0 to π; chance = π=2), and
this “error metric”was then transformed into an “accuracy score” (range: −π=2
to π=2; chance = 0). (ii) In contrast, the probability distribution of the signed
difference between y ̂ and an actual location was retained for directional
analysis (i.e., tracking the rotation itself). The resulting, continuous angular
distance estimates were then assigned to 1 of 24 evenly spaced bins (discon-
tinuous; range: [−π: π/24: π]) and the probability of a given estimate falling
within the range of a given bin was calculated across trials.

Statistical Analysis. All statistics reported refer to group-level analyses. In the
case of ERF and frequency data, we (i) performed cluster-based, non-
parametric t tests with 1,000 Monte Carlo permutations to identify signifi-
cant spatiotemporal differences between experimental conditions, while
simultaneously correcting for multiple comparisons, and (ii) additionally
present uncorrected outcomes of nonparametric signed-rank tests for
follow-up analyses (Puncorrected < 0.05). We relied on the above cluster-based
permutation analysis to assess multivariate decoding performance (i.e.,
categorical data: AUC > 0.5; circular data: rad > 0; 5,000 permutations).
Temporal averages over five a priori time bins, corresponding to an early
perceptual period (0.1 to 0.3 s), the P3b time window (0.3 to 0.6 s), the
maintenance period before (0.6 to 1.76 s) and after the cue (1.76 to 3.26 s),
as well as the response (3.26 to 3.5 s), are also provided. Bonferonni cor-
rection was applied to these a priori analyses to correct for multiple com-
parisons (Pcorr < 0.05/5). When appropriate, we present circular statistics and
computed Bayesian statistics based on two- or one-sided t tests (r = 0.707).
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